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A particular form of pandiagonal magic squares of doubly even order »
defined by Emory MecClintock in 1896 but not enumerated (except for the
well-known 4 x 4 pandiagonal squares), and described by him as ‘squares
of best form’ or ‘most perfect’, is discussed. The number of all such
squares for n = 8 is found, by the use of symmetries and logical argument
only, to be 2 x32x5 =2949120 (that is 213 x32x 5 = 368340 essen-
tially different squares). These squares are given in summary form in
an appendix.

1. ‘MOST PERFECT OR ‘COMPLETE’ PANDIAGONAL MAGIC SQUARES

A magic square of order » is defined as having the numbers in all rows, in all
columns and in the two principal diagonals adding to the same sum. When the
numbers are the consecutive integers 1 to n2, or 0 to n%2— 1, the square is described as
‘normal’. Here the discussion is of normal squares of order 8 comprising the
numbers 0—63, which are more convenient than the numbers 1-64 if it is desired
to convert results obtained in the decimal scale to scales 2, 4 or 8. All lines in these
magic squares contain numbers which add to 252, which can be called the magic
sum for these squares. Magic squares which cannot be transformed into one another
by reflection or rotation are said to be essentially different.

A pandiagonal magic square, sometimes called ‘perfect’ or ‘Nasik’ or ‘diabolic’,
is defined as having all rows, all columns and all diagonals (broken diagonals as well
as the principal diagonals) adding to this same sum. Pandiagonal magic squares
have the property that when extended indefinitely by repetition (‘transposition’)
in any direction, or when reflected in a diagonal, any square block of order =
remains pandiagonal. The square can thus be written with any element in the top
left corner without losing its pandiagonal magic properties. Moreover, every
0 to n*— 1 pandiagonal magic square with a particular number, say 0, in the top left
cell belongs to a set of n® essentially different magic squares obtained by taking
any other element of the square, extended horizontally and vertically without
rotation or reflection, as being in the top left cell. To demonstrate this, when (r, ¢)
denotes the elements in row 7, column ¢ (r,¢ = 1 to n), the horizontal and vertical
neighbours in the extended square of any number initially in the top left (1, 1)
position when placed at any of the four corners can be depicted by

(n, 1) (n,1)
(I,n) | (1,1) | (1,2) (I,n) [ (1,1)] (1,2)
(2,1) (2,1)
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and all four squares must be essentially different. Thus all the n? squares are
essentially different. We can call squares within a set thus described ‘equivalent’.
A second equivalent set of n? essentially different squares with 0 in the top left
cell, different but not essentially different from the first, is then obtained by
reflection of the squares of the first set in the principal diagonal. With these
considerations in mind, there is no loss of generality when studying these sets of
equivalent squares in choosing 0 as lying in the top left cell.

We have thus that if N is the total number of normal pandiagonal squares of order
n consisting of the numbers 0 to n*—1 that do not contain reflections and which have
0 in the top left cell, then the number of different pandiagonal squares of order n with
0 in the top left cell is 2N obtained by reflection, and the total number of essentially
different pandiagonal squares of order n is 2N x In?.

There is a large corpus of literature relating to pandiagonal squares of odd order,
all of which have certain clearly defined characteristics. There is one and only one
magic square of order 3 (known since at least 2200 B.c. as the lo-shu) and it is not
pandiagonal. There are 48 essentially different normal pandiagonal squares of
order 4 (see Frost (1878), Ball (1944), Rosser & Walker (1938) and Ollerenshaw &
Bondi (1982)). It is also well known and can be elegantly proved that there can
be no normal pandiagonal square of order » when # is singly even.

In April 1896 McClintock (1897) read before the American Mathematical Society
a paper entitled ‘On the most perfect forms of magic squares, with methods for
their production.” In part I of his paper he gives a thorough discussion of
pandiagonal squares of odd order. He begins part II with the remark, ‘Symmetry,
when the root r is even, is less useful a quality than when the root is odd, as there
is no midle place from which to measure distances.’

McClintock suggests the name ‘complete’ squares for these squares of ‘best
form’, but the term complete can cause confusion as the description ‘completed’
squares is much used in his (and in this) paper. The name ‘perfect’ is already
pre-empted as meaning merely pandiagonal, whereas the squares McClintock
describes in this paper have additional symmetries. Despite the pleonasm of ‘most
perfect’, this has an attractive Victorian flavour and is the preferred description
used here. McClintock defines these squares as follows, his precise words being used
in quotations throughout the next paragraphs, the only alterations being to
convert ‘1-64° to ‘0-63’ and to confine detailed discussion where appropriate to
squares of order 8.

First, ‘They possess all their properties without diminution however much the
rows and columns may be transposed.’ That is, all transpositions remain (normal)
magic pandiagonal most-perfect squares as defined below.

Second, ‘They possess additional magic summations by block of four, any small
square of four numbers being chosen as a block, and enough blocks being chosen,
overlapping or otherwise, to make up #? numbers in all.” That is, the numbers in
any 2 x 2 block in the extended square have the sum 28 = 2(n*—1).

Third, ‘ Each number is complementary to the one distant from it }n places in
the same diagonal.” That is, numbers distant i» places in the same diagonal add
to § = (n?2—1).
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As illustration McClintock used the 8 x 8 square shown below :

0 62 2 60 11 53 9 55
15 49 13 51 4 58 6 56
16 46 18 44 27 37 25 39
31 33 29 35 20 42 22 40

52 10 54 8 63 1 61 3
59 5 57 7 48 14 50 12
36 26 38 24 47 17 45 19
43 21 41 23 32 30 34 28

‘The second property produces a fourth, that of alternate couplets. For example,
in the square above every block of four has the sum 126, so that any two blocks
have the magic sum 252; and every number and its diagonal fourth has the sum
63. The sum of any two overlapping blocks being equal, it follows that all alter-
nate couplets have equal sums. Thus 0+ 15 =2+13, 49446 = 51 +44, 62+2
= 46+ 18, and so on throughout without exception, both vertically and horizon-
tally. A fifth property is an easy consequence of the fourth. The alternate couplets
being equivalent, the four corners of any rectangle whatever, having an even
number of places on each side, constitute a block again with the sum 126 so that
any two such blocks, however different in size and shape, whether apart or
overlapping, have the sum 252. The magic and pandiagonal properties themselves
follow necessarily in these squares from the third and fourth: as regards the whole
and broken diagonals, directly from the third, namely, that any selected four
numbers in the square added to the four numbers complementary to them in the
same diagonals respectively, distant each from its complement four places, will
have the sum 252. Of each row or column, one half is composed of the complements
of couplets which are alternate with and equivalent to the couplets composing the
other half, so that the row or column again has the sum 252. The problem is to
distribute 32 non-complementary numbers in four adjacent rows or columns,
forming one half of the square, so as to exhibit the second or “blocks of four”
property throughout the whole square when it is completed by adding the
complementary numbers.’

An additional property of 8 x 8 most-perfect squares, which McClintock does not
mention, emerges from the results proved in this paper, namely all 2 x 2 blocks in
a completed 8 x 8 most-perfect square are composed of two odd and two even numbers.
This property is not required or used in the proof which follows. It is seen to be
true on examining the representative list of all most-perfect 8 x 8 squares given
in Appendix 2. This property does not hold for all most-perfect squares where
n = 4m is not a power of two.

McClintock gave an ingenious method for the construction of most-perfect
squares with n = 4m,m > 1 which thus demonstrates that squares of this kind
always exist. He called it the ‘figure-of-eight’ method for reasons which will
become apparent. He stated moreover that all such squares would thus be
accounted for, but even for the 8 x 8s where m = 2 he fights shy of attempting an
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enumeration, saying, ‘It would involve much study to determine the number of
possible complete squares of 8 and assign the values corresponding.’
In the general form, most-perfect 0—63 squares of order 8 can be written as

below, with 4, 4"; B, B’; . . . complementary numbers adding to n?2—1 =63 = §
A B C D E F G H
a b ¢ d e f g h
I K L M N O P @
Tt k1 m n o p q

E F & H A B C D
e f g a b ¢ d
N O P @ I' K L' M
n o p q i kU m.

(The letters J and j are omitted to conform to the nomenclature used by Bernard
Frénicle de Bessey who, over 300 years ago, was the first to enumerate and list
correctly the 880 essentially different 4 x 4 magic squares.)

The square above is completely defined by its first four rows (or its first four
columns). It is necessarily pandiagonal as all diagonals consist of four pairs of
complementary numbers. By definition also, each 2 x 2 block of four numbers has
the sum 2S. Hence elements in any two neighbouring rows or columns together
add to 88 and so alternate rows or columns have equal sums. But the first and
fifth rows or columns consist of two sets of complementary numbers and their
elements thus together add to 8S. Hence each row or column has elements adding
to 48. It follows that the conditions that each 2 x 2 block has elements adding to
28 and that complementary numbers are all in = 4 distant on a diagonal are
sufficient to ensure that the square is both pandiagonal and magic.

2. ‘McCLINTOCK SQUARES’

McClintock illustrated his method by showing how he devised the most-perfect
square shown earlier. The top half of a new square was filled in as indicated below
by following the order of the numbers from 0-31 in the way shown:

o 1 2 3 11 10 9 8
15 14 13 12 4 5 6 7
16 17 18 19 27 26 25 24
31 30 29 28 20 21 22 23.

The numbers in every alternate column, second, fourth, etc., were then replaced
by their complements, and this supplies the upper half of the most-perfect square,
the lower half being added by writing in the complements as indicated earlier. The
rule therefore for producing most-perfect squares as stated by McClintock is to
‘write the first four numbers in the first row, then drop to the second row,
returning backwards along the first row and dropping to the second so as to
complete both rows in what may be called a figure-of-eight manner. The next two
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rows must come next in the same way and then every alternate column is replaced
by the complementary numbers, after which the rest of the square is completed
by writing down the complement of each number in the same diagonal four places
lower down. The numbers may be arranged in any ‘appropriate’ artificial order,
but no other variation is proposed. .. .It makes no real difference which set of
columns is selected for replacement, whether the first, third, etc. or the second,
fourth, etc., nor does it make any difference whether the complements of the
alternate columns are written in before or after the square is completed by adding
complements of numbers in the first four rows in the required positions in the lower
four rows.’

McClintock continues. ‘Since other ways of arranging the numbers in order are
doubtless available, while certainly the numbers cannot be arranged at random,
it becomes necessary to examine the principle underlying this method, so as to
ascertain the limits within which the order of the numbers can be changed.’

In effect, McClintock has re-written the general most-perfect 8 x 8 square
depicted above as

A B C D E F & H

a b ¢ d e f g ¥
I K L M N O P @
T Kl owm n o p ¢
E F @ H A B C D
e f g h a b ¢ d
N O P @ I' K L' M
n o p gq vk U m,

where now all vertical couplets have the same sum, and the square is completely
defined by its top row and first column. Call this the  McClintock square’. It is plain
that for every most-perfect square there is one and only one McClintock square
obtained by this conversion and vice versa and, if the number of different
McClintock squares can be identified, then so also can the number of different
most-perfect squares. The number in the top left cell remains unchanged by the
conversion. In McClintock squares, in addition to the interchanges of any pair of
even or odd complementary rows or columns, even and odd complementary
columns (but not rows) can also be interchanged, before conversion into most-
perfect squares, without disturbing the essential properties of the McClintock
square.

The only conditions which are required to form a McClintock square, derived
from the definition of most-perfect squares, are that all vertical couplets wherever
they occur have equal sums, and that no two numbers in either the top four rows
or the first four columns are complements. These conditions are sufficient to ensure
inreverse that, when alternate columns of a McClintock square are replaced by their
complements, the resulting square will be most perfect, for any two adjacent
couplets must have the same sum, say k, and when one of these two couplets is
replaced by its complementary couplet the sum of which is 28—, the 2 x 2 block
of four thus formed has the required sum 28. The restriction lies in choosing the



264 Dame Kathleen Ollerenshaw

sequence of the first four numbers 4, B’,C, D’, the sums A+a, A+ I, and the
differences (plus or minus) between D’ and e, and between M’ and n, so that no
two numbers if these first four rows are complementary. There are several
advantages in working with McClintock squares rather than directly with most-
perfect squares when discussing all possibilities, in particular all vertical couplets
in adjacent rows are equal instead of only alternate vertical couplets, and the
initial stages of the discussion can as a consequence be limited to settling positions
of the smallest numbers, namely 0-7, instead of having to deal with a mixture of
complementary numbers.
The conditions that must prevail in McClintock squares are as follows.

(i) All vertical couplets have equal sums, i.e. A+a= B +b' =...=H +k;
a+l=b'+K =c+L=..=h+Q; I+i=K+k=..=Q +q; 1+E =
K+F=..=q¢+D.

(ii) A+ E=B+F =C+G=D+H', and similarly for numbers in all rows,
which can be referred to as equal cross sums within each row;

(iii) A+f =B +e,B+g=C+f',....D'+a=E+h, and A+d =e+H and
stmilarly for numbers in all adjacent rows, which can be referred to as equal cross
sums within adjacent rows;

(iv) sums of numbers in opposite corners of rectangles an odd number of rows
apart are always equal, and these can be referred to as equal cross sums between
alternate rows.

If the half rows of the second and third rows and their complements are
interchanged, and if the half rows of the third and fourth rows and their
complements are interchanged in transformations U, V as shown below to produce
squares whose first four rows are, respectively,

U
A B C D E F G H
N O P @ I K L M
e f g N a b ¢ d
T Kl om n o p q
A%
A B C D E P & H
a b ¢ d e f g W
n o p q i Kl om
N O P @ 1 K L M.

These squares are essentially different from each other and from the original
square. Moreover, they both, when completed, still have the McClintock properties
with O still in the top left cell for, from (ii) and (iv) above, A+ E =
B’ +F ,I+N=K+0" and so (A+N)=(B'+0’) and, similarly, all vertical
couplets have equal sums in both squares.

Consider only those McClintock (and most-perfect) squares with 0 in the top left
cell. Because in any McClintock square vertical couplets all have the same sum,
a square defined as above with 0 at top left remains a McClintock square with 0
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at top left when any of the six columns 2, 3, 4, 6, 7 or 8 are interchanged to be placed
as columns 2, 3 or 4 provided that the complementary columns are then placed as
colummns 6, 7 or 8, respectively. Interchanges of columns thus lead to 6 x4 x 2 = 48
essentially different squares with the same McClintock properties. The horizontal
couplets do not have equal sums and neither the top row nor the fifth row can be
changed without disturbing 0 at top left; the interchanges of complete rows are
thus restricted to 4 x 2 interchanges between the even rows and the one possible
interchange between the two odd rows 3 and 7, giving 16 permissible interchanges
of complete rows. In addition, the interchanges of half rows by the transformations
U,V illustrated above give three sets of essentially different squares in all, thus
providing a further factor of 3. Every McClintock 8 x 8 square with 0 in the top
left corner thus belongs to a set of 48 x 48 essentially different squares with the
same properties, defined by these interchanges of columns, rows and half rows
which are always permissible. Call these the permissible interchanges.

The reflections of these squares in their principal diagonals give different squares
with 0 at top left. We need to find all possible McClintock squares (together with
their reflections) with 0 in the top left cell. By replacing alternate columns by their
complements we then have all possible most-perfect squares with 0 in the top left
cell. The number of these squares multiplied by 64 and divided by 8 then gives
the total number of essentially different 8 x 8 most-perfect squares. Define as a ‘set
of McClintock squares’ the 48 x 48 squares which can be derived from one another
by changes of columns, rows and half rows as described above without disturbing
the McClintock properties and still leaving 0 in the top left cell. Any desired square
from a set can be chosen as the ‘principal solution’ from which the full set of
48 x 48 squares can be derived by the permissible interchanges defined above.

A list of principal solutions, chosen to exhibit symmetries and sufficiently
represented by their first four rows only, is given in Appendix 1. There are 20 in
all, including reflections, giving a total of 20 x 48 x 48 different (not essentially
different) squares with 0 in the top left cell. When alternate columns are replaced
by their complements, these lead to

20X 48 x 48 x 64 = 216 x 32 x 5 = 2949120
different most-perfect squares in all, or, on dividing by 8,
20 x 48 x 48 x 64 /8 = 213 x 32 x 5 = 368640

essentially different most-perfect squares.

3. ‘PRINCIPAL SOLUTIONS  OF SETS OF MCCLINTOCK SQUARES
(a) General properties

The principal solutions are divided into four categories A, A’, B and B’ according
to the positions of 0—7. There is one set of solutions in each of categories A and
A’, and nine sets in each of categories B and B’. It transpires that solutions which
belong to the set A have their reflections in the set A’; and solutions which belong
to the nine sets in category B have their reflections among the solutions in the nine
sets in category B’. It is not obvious that the solutions in the sets A and A’,
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respectively, are reflections and that those solutions which collectively form the
sets B are collectively the reflections of those which form the sets B’. This is
because, from each McClintock square with 0 at top left, most-perfect squares can
be derived with O still at top left with three different arrangements of numbers
in the top row according to which of the columns are placed as second, fourth (and
sixth and eighth) and numbers in them replaced by complements, whereas the
numbers in the columns placed as third (and seventh) remain unchanged. A list
of all most-perfect squares derived from the principal McClintock solution chosen
to represent the category A, and from the nine principal McClintock solutions
chosen to represent those in the nine sets in category B, is given in Appendix 2.
Their reflections in the principal diagonal through 0 in the top left cells can be
similarly derived from the principal McClintock solution representing category A’
and the nine principal McClintock solutions representing the category B’.

We have to prove that the 20 sets of 48 x 48 squares of which these 20 squares
have been chosen as the principal solutions collectively give all McClintock 8 x 8
squares. The proof is straightforward. No arguments other than extensions of
those given by McClintock for his method of construction of all most-perfect
squares are used, and it thus has its own internal elegance. The positions into
which the numbers 0 and 1, and then 2 and 3, and then 4 and 5, and 6 and 7 can
always be placed in some solution within any set arrived at by permissible
interchanges are first established by applying the McClintock rules, and then
progressively (and more easily) the ways in which the remaining numbers can fill
the vacant positions are similarly established. In the work which follows dots
represent unfilled positions. No more rows are shown than are necessary to
indicate the positions described, the complements of numbers shown being known
by definition to fill positions four distant in the same diagonal.

Denote by (r,c), r,c = 1-8, the positions in row 7, column ¢. Consider only those
McClintock (and most-perfect) squares with 0 at top left, i.e. at (1,1). A few
preliminaries are helpful. First we notice that

(v) no two numbers 0-7 can lie in the same column in adjacent rows, for the
smallest sum of a vertical couplet is 15, because 15 is the smallest number which
is the sum of eight pairs of different numbers which include 0. Next

(vi) the number 1 cannot be in the fifth row, for if it is at (5, 1) then 62 must
lie at (1,5) and the smallest number available to form a vertical couplet with 62
is 2 giving a sum of 64, which is not available for the position (2, 1) to form an
equal couplet with 0 at (1, 1); and if it lay anywhere else in the fifth row, its cross
sum with 0 at (1,1) could not be matched by the opposing cross sum. Likewise,
the number 2 cannot be in the fifth row, for if it is at (5, 1) the number 61 is at
(1,5) and the smallest number available for (2, 5) to form the vertical couplet with
61is 1, which requires 62 at (2, 1) whereas this has now to be at (6, 1) complementing
1 at (2,5); and if it lay anywhere else in the fifth row, its cross sum with 0 at (1,1)
has to be 2, i.e. two numbers 1 would be required. It follows that in every set of
McClintock squares with 0 at (1, 1), because neither 1 nor 2 can be in the fifth row,
interchanges of rows can bring 1 and 2 into one or other of the first three rows.
By a similar reasoning, 3 cannot be in the fifth row if 0, 1 and 2 are already fixed
within the first four rows, for if it is at (5, 1) then 60 must be at (1, 5) and either
1 or 2 at (2,5) with, then, 61 or 62 at (2, 1) and so 2 and 1 re-occurring at (3, 5).
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Similarly, 4, 5, 6 and 7 cannot be in the fifth row if 0-3, 04, 05, 0-6, respectively,
are already fixed in the first four rows.

(b) Positions of the numbers O and 1
It is first established that

(vii) within each set of McClintock squares with 0 at (1, 1) a square exists in
which the number 1 is either in the position (1,2), or in the position (2, 5), i.e. at

0 1 e o e o o o
or O o e o e o o o
e o o o o o

With 0 at (1,1) and no other numbers placed, because 1 cannot be at (5,1)
permissible interchanges can always bring it to one or other of the top two rows.
Suppose it lies in the first row. It cannot be at (1,5) for there its sum with 0 at
(1,1) could not be matched by the sum of any other of the pairs of numbers in
the first row which are required to have equal sums. It can, however, lie anywhere
in the first row except at (1,5) or (1,1) and therefore be brought by interchanges
of columns into the position (1,2) as illustrated above. If it is in the second row
it cannot lie at (2,1) by (v). Nor can it be anywhere else other than at (2,5) as
illustrated above, for otherwise it could be brought to the position (2,6) and its
sum with 0 at (1,1) could not be matched as required by the sum of different
numbers at (1,2) and (2,5). The statement (vii) is thus true.

(c) Posttions of the numbers 2 and 3
Consider now the possible positions of the numbers 2 and 3 when the number 1
is taken in turn as being at (1,2) or at (2,5). We find that
(viii) with O at (1,1) and 1 at (1, 2) it is always possible to bring 2 and 3, to one
or other of the positions shown below:

0 1 2 3 o o o o

or 0O 1 e o e o o o

e o o o 2 3 e o,

The reasoning goes thus. With 0 and 1 in the two top left positions 2 cannot be
at (1,5). Thus, if 2 is anywhere in the first row it can be brought to the position
(1,3). Then, if 3 is also in the first row it cannot be at (1,5), (1,6) or (1,7) and
so can be brought to (1,4) as illustrated above. With 0, 1 and 2 in the first three
top positions, if 3 is not in the first row, it can be brought to the second row, where
its only possible position would be at (2, 5) leading to

01 2 o e o o o
e o o o 3 4 5 o,

Consider the possibilities for the number 6. If 6 is in the top row, it can be only

at (1,4) or (1,8) and can then be brought to (1,4). If, then, 7 is also in the top
row, we would have

o 1 2 6 13 12 11 7
16 15 14 10 3 4 5 9
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The number 8 can then be brought either to the third (or the fourth row and thence
by V to the third row). But it cannot be in the third row without causing
duplications of numbers. With 6 at (1,4), 7 cannot be in the second row and can
thus be brought to the third row. In the third row it could only be at (3, 8) to give

0 1 2 6 L] [ [ ] [ ]
e o o o 3 4 5 9
e o o o 13 12 11 7

Here there are no available pairs of different numbers summing to 16 available
to fill the first halves of the second and third rows. This rules out the possibility
of 6 being in the top row. If 6 is in the second row, it can only be at (2,4) or (2, 8)
and so can be brought to (2, 8), which is precluded as it would require a second
3 at (1,4). Because 6 cannot be in the first or second row or at (5,1) it could be
brought to the third (or to the fourth row and thence to the third row by V). If
it were at (3,8) it could be brought to (3,4) and it cannot be at (3,4) as then
the number 4 would have to be repeated at (3, 3); nor can it be at (3,5), (3, 6) or
(3,7). The only possibility is thus (3, 1) giving

0 1 2 e e o o o
e o o o 3 4 5 e
6 7 8 e ° . e o
e o o o 9 10 11 e

The numbers 12 and 13 or their complements 51 and 50 have then to find a place
in one of the remaining vacancies in these first four rows, the fourth and eighth
columns being still interchangeable. It follows that neither 51 nor 50 can fill any
of these vacancies without complements of numbers already fixed (or at least one
number greater than 63) occurring. Consider possibilities for 12 in the top four
rows. It cannot be in the first, second or third columns or in the fifth, sixth or
seventh. The fourth and eighth columns can be interchanged, and 12 cannot be
at (2,8) without the duplication of 9, nor anywhere in the third or fourth rows
without causing duplication. Suppose, finally, that it is at (1,4), giving

01 2 12 e o o o
e o o o 3 4 5 15
6 7 8 18 e o o o
® o o o 9 10 11 21.

The number 13 now has to find a place in these first four rows. It cannot fill the
vacancies in the second, third or fourth rows, and its only possible position in the
first row is at (1, 8) giving the first four rows of the square

o 1 2 12 25 24 23 13
28 27 26 16 3 4 5 15
6 7 8 18 31 30 29 19
34 33 32 22 9 10 11 21,

which contain the complements 34,29, 33,30; 32,31 and are therefore not per-
missible. This establishes that the positioning of 0, 1 and 2, and 3, 4 and 5 in the
first and second rows as shown is untenable and leaves only the one possible
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position for 3 when 0, 1 and 2 are the first numbers, namely at (1,4) as shown in
the first example of (viii).

The other example in (viii) is easier to establish. With 0 and 1 still at top left,
because 2 cannot then be in the fifth row, it can always be brought to the second
row. If it were at (2, 3) or (2, 4) it could be brought to (2,7), but this is impossible
as there are no numbers available for the positions (1, 3) and (2,6) to match the
cross sum 1+ 2. Hence 2 must be at (2, 5) and then 3 must be at (2, 6) as illustrated.
This establishes statement (viii).

(ix) Now consider 1 at (2,5). If 2 is in the top row, because it cannot be at (1, 5)
it can be brought to (1, 2). The number 3 must then be at (2, 6) as illustrated below.
The number 2 cannot be in the second row, for it cannot be at (2, 1) (and 1 occupies
(2,5)) and if it were in any other of the six available positions it could be brought
to (2, 6), which is incompatible with 0 at (1,1) as the number 1 is not available
for (1,2). If 2 is not in the top row (and not in the second row) it can be brought
to the third row on using the interchange V if necessary. It can then only be at
(3,1) as otherwise it would be incompatible with 0 at (1,1) because cross sums
could not be equal. The same argument then shows that 3 cannot then be in any
of the top three rows or their complements and so can always be brought to the
fourth row, but then only in the position (4,5) as illustrated below:

0 2 e o ° o

e e o o 1 3 e o,
O o e o e o o o
e o o o 1 o e o
2 e e o e o o o
o o o o 3 e e o,

This has established that, in every set of McClintock squares, a square can be
found to form the principal solution in which the numbers 0, 1, 2 and 3 are in one
or other of the four positions illustrated above. We can now proceed to determine
positions for the numbers 4 and 5, and 6 and 7.

(d) Positions of the numbers 4, 5, 6 and 7

I. Consider first the possibilities when 0, 1, 2 and 3 are the first four numbers
in the top row. If any other number 4-7 is also in the top row, then the rules decree
that they must be 7, 6, 5 and 4 in that order. If 4 is not in the top row then it
can be brought to the second row, where the only possibility is for it to be at (2, 5)
with then 5, 6 and 7 at (2,6), (2,7), (2, 8), respectively. Thus, in all sets with 0,
1, 2 and 3 as shown in the top row, principal solutions can be found with the
numbers 0-7 arranged in one of the two formats illustrated below, where the
labelling of ‘skeleton squares’ conforms to that shown in Appendix 1, namely

A
01 2 3 76 5 4

B(1)

e o o o
e o o o 4 5 6 17.
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II. Consider now what happens when 0 and 1 are at the top of the first row and
2 and 3 are at (2, 5) and (2, 6), respectively. If 4 is in the top row it must be either
at (1,3), (1,4), (1,7) or (1,8) and can thereforec be brought to (1,3) without
disturbing the positions of 0, 1, 2 and 3. This then means that 6 would have to
be at (2,7) as illustrated:

0 1 4 o e o o o
e o o o 2 3 6 e

If 5 is in the top row it has to be at either (1,4) or (1, 8) and can then be brought
to (1,4), which then means that 7 has to be at (2, 8) as illustrated below and shown
in Appendix 1, labelled B(2). The number 5 cannot be in the second row because,
if it were, it would have to be either at (2, 4) or (2, 8) and could be brought to (2, 8),
and this would not be compatible with the positions of 0 and 1 in the top row.
If 5 is not in the first (or second) row, it can be brought to the third row (or to
the fourth and thence to the third by V). But it cannot be in the third row for
neither of the numbers 6 or 4 is available to make a cross sum equal to that of
5 with either 1 or 0 in the top row.

If 4 were to be in the second row it would have to be at (2, 3), (2,4), (2,7) or
(2,8) and could then be brought to (2, 7). It cannot be at (2,7) as the number 2 is
not available for the position (1, 3) which is needed to satisfy the rules. As therefore
it cannot be in either of the top two rows or the fifth row, it can be brought to
the third row. If it is in the third row if necessary by using V, it can only be at
(3, 1) to be able to satisfy the cross sums with 0 and 1, and then 5 must be at (3, 2).
The number 6 can then be brought to the fourth row where it can only be at (4, 5)
with 7 at (4, 6) as illustrated below and in Appendix 1, labelled B'(1):

]
[ )
]
e O
[\

B'(1)
0O 1 e o e o o o
e o o o 2 3 e o
4 5 e ° ° e o o
e o o o 6 T e o

III. Next consider what happens when 0 and 2 are at (1, 1) and (1, 2), and 1 and
3 at (2,5) and (2, 6), respectively. The number 4 cannot be in the fifth row. If 4
1s then in the top row, it cannot be at (1, 5) or (1, 6) and so can be brought to (1, 3),
giving then
0 2 4 o e o o o

e o o o 1 3 5

The number 6 cannot now be in the fifth row. If it is in either of the top two rows,
it can be brought to either (1,4) or (2, 8) respectively, the latter position being
incompatible with 0, 2 and 5 being at (1, 1), (1,2) and (2, 7), respectively. The only
possibility is therefore B(3)
0 2 4 6 e o o o
e o o o 1 3 5 7.
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We have to consider what would happen if 0, 2 and 4 are at (1, 1), (1,2), (1,3) and
1, 3, 5at (2,5), (2,6), (2,7), respectively, but 6 is not in the first or the second (or
the fifth) row. It could then always be brought to the third row, but only at (3, 1),

giving 0 2 4

. o o o o
e o e o 1 3 5 o
6 8 10 e e o e o
e o o o 7 9 11 e

The number 12 or its complement 51 then has to find a home within the first four
rows in the vacancies shown, as there is no more freedom of movement between
rows. The number 12 cannot be anywhere in the first three columns or in the fifth,
sixth or seventh columns of these first four rows and still leave sufficient pairs of
different numbers available to give vertical couplets with equal sums in the first
two or the third and fourth rows respectively. It can therefore be brought to either
the fourth or the eighth columns, which are interchangeable. It cannot be at (2, 8),
(3,4) or (4,8) without duplicating 11, 6 and 5, respectively at (1,4). The only
possibility is then for 8 to be at (1,4), which would mean 13 at (2, 8), 18 at (3,4)
and 19 at (4, 8) as shown below:

0 2 4 12 * o e o
e o o o 1 3 5 13
6 8 10 18 e o o o

e o o o 7 9 11 19.
The number 14 or its complement 49 would then have to find a place in the
remaining vacancies in these first four rows. If 49 were in any of the vacant spaces
in the top row, the numbers which then would have to fill the remaining vacancies
in the top four rows would include complements of numbers already in the top
four rows. Likewise, if 14 fills any of the vacancies as, for example, in the
illustration below, the two pairs of complementary numbers 30 and 33, 31 and 32
are both in the top four rows
0 2 4 12 26 24 22 14
27 25 23 15 1 3 5 13
6 8 10 18 32 30 28 20
33 31 29 21 7 9 11 19.

If the number 12 is not in the top four rows then 51 must find a place. It cannot
be at (1, 4) for then 57 would be at (3, 4) and the complements 57 and 6 would both
be in the top four rows. It cannot be at (3,4) because then 56 would be at (2, 8)
and 56 and 7 would both be in the top four rows as shown:

2 51 o o . .
e o . . 1 3 5 .
6 8 10 (57) o o o o
o o . . 7 9 11 (]
0o 2 4 . e o . .
e o o . 1 3 5 (56)
6 8 10 51 e o o .
o o . . 7 9 11 .

10 Vol. 407. A
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nor can it be in any of the other vacancies in the top four rows without
complementary numbers occurring. This establishes that the only possibility is the
format B(3) as shown in Appendix 1, namely

0 2 4 6 e o o o
e o o o 1 3 5 7

Return now to consideration of what happens when the first two rows are

0 2 o o o o o o

e o o o ] 3 e o

but 4 is not in the first row. The number 4 cannot be in the fifth row. If 4 were
in the second row it could be brought to (2,7) which is incompatible with 2 and
3 at (1,2), (2, 6) respectively. If 4 is not in the first or second row (or the fifth row). .
it could be brought to the third row where the only possibility would be at (3. 1)
with 6 then at (3,2). The number 5 can then be brought to the fourth row where
it can be only at (4,5) with 7 at (4,6), as illustrated below and in Appendix 1
labelled B’(2)

B'(2)
0O 2 o o e o o o
e o o o 1 3 o
4 6 o o o o o
e o o o 5 7 e

IV. Consider now what happens when the numbers 0, 1, 2 and 3 are at (1, 1),
(2,5), (3,1) and (4, 5), respectively, as in A” in Appendix 1. If then 4 is in any of
the four top rows it cannot be in cither the first or fifth columns. If then it is in
any other column it can always be brought to the second or sixth column. The
only position it can thus occupy in the first four rows is at (1,2) and then the
positions of 5, 6, 7 are immediately determined as in B’(3) below. If 4 is in the lower
four rows, it can only be in the fifth column and then at (8, 5), for otherwise the
sums of numbers at opposite corners of squares of which x is one corner could
not be equal. It follows that principal solutions can always be found when 0, 1,
2 and 3 are in the positions shown below:

B’(3)
0 4 o o o o o o
e o o o 1 5 e o
2 6 o o e o o o
e o o o 3 7 e o
or A’

O o o o e o o o
e o o o 1 o o o
2 o o o e o o o
e o o o 3 e o o
7T o o o e o o o
e o o 0O e e o
5 e . (] L]

e o o o 4 o o o
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We have now established that all McClintock squares with O in the top left cell
can be represented by sets in which principal solutions have 0—7 conforming to one
or other of the eight different patterns, formed by the numbers 0—7, which have
been identified during the discussion above and shown in Appendix 1. It remains

to establish in how many ways the vacancies in these skeleton squares can be filled
by the numbers 8-63.

(e) Numbers in the remaining positions

Consider the formats A where all the digits 0—7 lie in the top row. The
complements of 0—7, namely 63-56, all lie in the fifth row. The number 8 can then
be brought to the second row where it can be only at (2, 5), for otherwise its sum
with the number above it in the top row will be less than 15. The second row is
then fully determined asin A(1) of Appendix 1 and contains all the numbers 8-15.
The number 16 can then be brought to the third row where it can be only at (3, 1)
for otherwise its cross sum with 0 at (1, 1) cannot be matched and the third row
is fully determined as in A(1) and contains all the numbers 16-23. This leaves 24
to find a place in the fourth or eighth row, that is, sufficiently, in the fourth row,
and then at (4, 5) leading to the full principal solution A(1). This establishes that
there is just one set of McClintock squares with 0 at top left in which 07 are all
in the top row, namely in category A, and the principal solution can be chosen
as A(1) of Appendix 1. ‘

Next consider the formats B. If 8 is in the first row or second row then it can
only be at (1, 8), otherwise the sums of vertical couplets in the first two rows would
be less than 15. The positions of all the numbers 8-15 are then fully determined,
filling, with 0—7, the first two rows as in B(1a), B(2a) and B(3a). The number 16
can then be brought to the third row (or to the fourth and then by V to the third)
where it can only be at (3, 1), thus determining the position of all the numbers
16-31, and giving these three principal solutions just mentioned.

If the number 8 is not in the first or second row, it can be brought to the third
row where it can only be at (3,1), as otherwise its cross sum with 0 at (1,1) and
1 or 2 at (1,2) cannot be matched correctly. The positions of 0-15, and so 6348,
are then completely determined, filling alternate half rows as in B(1b), B(2b),
(3b); B(lc), B(2¢) and B(3¢) as shown below and in Appendix 1:

0 1 2 3 ¢ ©° o o,
° . ° .

8 9 10 11 e o o o

o o o o 12 13 14 15

0 1 5 b ® hd e,
° . ° . 6

8 9 12 13 L

e o e o 10 11 14 15

0 2 . (] . L]

. ° ° . 1 3 5

8 10 12 14 e o o o

o o o o 9 11 13 15
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The number 16 or its complement 47 have then to find a place in these top four
rows. If 16 is in the top row, it has to be at (1,8) and the square is completely
determined as in B(1b), B(2b), B(3b). The number 16 cannot be in any other of
the vacant positionsin any of the three formats above without causing duplications.
Likewise, 47 cannot be in any of the vacant positions except at (4,1) without
causing complementary numbers to occur in these four rows. With 47 at (4, 1), the
squares are completely defined as B(3a), B(3b), B(3¢).

Consider now the remaining formats A’, B’ (which give the reversals of the first
sets defined by the principal solutions shown). With the positions of 0-7 fixed as
shown there is no further freedom of interchange between rows. Consider A”: the
numbers in the first and fifth columns are completely determined by 0-7 and their
complements 63-56. The number 8 can then be brought to the second column
where it can be only at (1, 2), and this determines the positions of 8-15 which, with
their complements, must completely occupy the second and sixth columns. The
number 16 can then be brought to the third column where it can be only at (1, 3),
and then 16-23, with their complements, must occupy the third and seventh
columns in a manner which gives equal vertical couplets as shown in A’(1). The
number 24 can then be brought to the fourth column where it can be only at (1,4)
and we have the square A’(1).

In the remaining configurations B’, the fixed positions of the numbers 0-7
again permit no further interchanges of rows. Consider B’(1): if 8 is in one of the
top four rows, because it cannot be in the first, second, fifth or sixth columns, it
can be brought to the eighth column where it can be only at (1,8) and still be
compatible with the positions of 0,1 and thus gives

0 1 . ° . . 9 8
e o 11 10 2 3 e e
4 5 o o . e 13 12
e o 15 14 6 7 o o

e o 54 55 63 62 e o

61 60 o o e o 52 53
e ¢ 50 51 59 58 e e
57 56 o o U e 48 49.

If we now consider the possible positions for 16, we find that it can only be at (1, 3)
giving B’(la), or at (8,5), and so 47 at (4, 1), giving B’(1b). If 8 is not in the top
four rows, consider then the possible positions of 16. If it is in the top row, it must
be in the third, fourth, seventh or eighth columns and so can be brought to (1, 8)
and we have

0 1 e o e o 17 16
e o 19 18 2 3 e e
4 5 e o e o 21 20
e o 23 22 6 T e o

o o 46 47 63 62 e o
61 60 o o e & 44 45

o o 42 43 50 58 o e
57 56 e e e o 40 41.
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Then the only position for 8 is at (8,5), with 55 at (4,1), and the square is
completely determined as B'(1¢).

The argument for the squares with 0—7 in the positions B’(2) and B’(3) gives
exactly the same positions for 8 and its complement 55, and for 16 and its
complement 47, resulting in the squares defined by B'(2a), B'(2b), B'(2¢); B'(3a),
B'(3b), B'(3¢).

This completes the proof that all sets of McClintock squares with O at top left can
be derived from the principal solutions listed in Appendix 1 and that these sets taken
as a whole include the reflections in their principal diagonals.

The ‘permissible transformations’ of these McClintock squares then lead to all
such squares, and the replacement of all odd columns by their complements forms
all most-perfect squares with 0 in the top left cell. These are shown in representative
form in Appendix 2 from which it is seen that all 2 x 2 blocks of a most-perfect 8 x 8
square consist of two even and two odd numbers, the property of 8 x 8 most-perfect
squares which was stated in the introductory section.
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APPENDIX 3. NOTE ON THE USE OF DIFFERENT SCALES

If the most-perfect squares are written in scales 8, 4 or 2, they can be thought
of as being formed by 2, 3 or 6 ‘constituent matrices’, respectively, by using the
digits 07 each 8 times, the digits 03 each 16 times or the digits 0 and 1 each 32
times. If each separate matrix obeys all the rules of most-perfect squares, then,
when they are juxtaposed they will form a most-perfect square in whatever
permutation they are arranged provided that when thus juxtaposed there is no
duplication of any number 063, i.e. that each number 0-63 occurs once and only once
in the complete square. 1t is relatively simple to write down all possible single-digit
8 x 8 matrices in any of these three scales which are separately most perfect and
to formulate conditions such that when juxtaposed there are no duplicated
numbers in the completed squares. Indeed the solutions in this paper were first
discovered precisely in this way by using scale 8, where, with only two single-digit
matrices to contend with, patterns are easily discernible. The problem however of
proving that these are the only possible most-perfect squares becomes more acute
as the scale used becomes smaller, because of the ‘carry factor’. For example, in
scale 8, unit matrices can be constructed in which all conditions are satisfied with
the digits forming alternate couplets having either equal sums or sums differing
by 8; and radix matrices in which all ‘matching’ couplets have either equal sums
or sums differing by 1, respectively. When the two matrices are juxtaposed the
numbers formed by these matching couplets will have, as required, equal sums, and
blocks of four will also have correct sums. It then has to be shown that no two
such matrices can be found which, when juxtaposed, do not produce duplicate
numbers.

Even in scale 8, this requires a tedious process of elimination. In the binary scale
the problem is worse as the ‘carry factors’ which can arise from the juxtaposition
of six matrices are correspondingly more complicated. In other words, matrices
in scales 8, 4 and 2 are only ‘permutable’ when all the couplets and 2 x 2 blocks
within each constituent single-digit matrix behave exactly as the numbers in the
completed square; but it then has to be established that no additional solution can
arise from the juxtaposition of matrices which have within them couplets or 2 x 2
blocks with sums which might be ‘carried over’ to the matrix next on its left. This
can be overcome for n = 8 if the fact, established in this paper, is first proved
independently that all 2 x 2 blocks in the 8 x 8 most-perfect square consist of two
odd and two even numbers. There appears to be no simple proof and the property

does not hold for all most-perfect squares of order n = 4m when m is not a power
of 2.

I am grateful to Professor John Leech, University of Stirling, who pointed out
the fundamental error made in my first submission of this paper with the work
in scale 8 of asserting that permuting (or ‘reversing’) the two single-digit matrices
of a most-perfect square written in scale 8 necessarily gives reflections. The
difficulty of dealing with any hidden ‘carry factor’ when working in scale 8, scale
4 or in binary does not arise when matrices are not used, but only the numbers
0-63 themselves as in the proof now given, where reflections ‘take care of
themselves’ among the totality of all solutions and the method extends without
further problems to squares of higher evenly even order.



